Header Logo

Connection

Lynette Rogers to Hyperoxia

This is a "connection" page, showing publications Lynette Rogers has written about Hyperoxia.
Connection Strength

6.133
  1. Alterations in VASP phosphorylation and profilin1 and cofilin1 expression in hyperoxic lung injury and BPD. Respir Res. 2018 Nov 21; 19(1):229.
    View in: PubMed
    Score: 0.577
  2. Arginase and a-smooth muscle actin induction after hyperoxic exposure in a mouse model of bronchopulmonary dysplasia. Clin Exp Pharmacol Physiol. 2018 06; 45(6):556-562.
    View in: PubMed
    Score: 0.547
  3. miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2017 08 01; 313(2):L339-L349.
    View in: PubMed
    Score: 0.518
  4. DHA Suppresses Primary Macrophage Inflammatory Responses via Notch 1/ Jagged 1 Signaling. Sci Rep. 2016 Mar 04; 6:22276.
    View in: PubMed
    Score: 0.478
  5. Cyclooxygenase-2 in newborn hyperoxic lung injury. Free Radic Biol Med. 2013 Aug; 61:502-11.
    View in: PubMed
    Score: 0.392
  6. Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice. Am J Physiol Regul Integr Comp Physiol. 2012 Aug 01; 303(3):R279-90.
    View in: PubMed
    Score: 0.370
  7. Systemic maternal inflammation and neonatal hyperoxia induces remodeling and left ventricular dysfunction in mice. PLoS One. 2011; 6(9):e24544.
    View in: PubMed
    Score: 0.351
  8. Maternal docosahexaenoic acid supplementation decreases lung inflammation in hyperoxia-exposed newborn mice. J Nutr. 2011 Feb; 141(2):214-22.
    View in: PubMed
    Score: 0.333
  9. Hyperoxia exposure alters hepatic eicosanoid metabolism in newborn mice. Pediatr Res. 2010 Feb; 67(2):144-9.
    View in: PubMed
    Score: 0.314
  10. Alterations of the thioredoxin system by hyperoxia: implications for alveolar development. Am J Respir Cell Mol Biol. 2009 Nov; 41(5):612-9.
    View in: PubMed
    Score: 0.294
  11. Differential responses in the lungs of newborn mouse pups exposed to 85% or >95% oxygen. Pediatr Res. 2009 Jan; 65(1):33-8.
    View in: PubMed
    Score: 0.291
  12. Selenium modulates perinatal pulmonary vascular responses to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2025 May 01; 328(5):L716-L723.
    View in: PubMed
    Score: 0.224
  13. Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice. Redox Biol. 2021 01; 38:101797.
    View in: PubMed
    Score: 0.166
  14. Perinatal inflammation induces sex-related differences in cardiovascular morbidities in mice. Am J Physiol Heart Circ Physiol. 2018 03 01; 314(3):H573-H579.
    View in: PubMed
    Score: 0.135
  15. Nurr1 expression is modified by inflammation in microglia. Neuroreport. 2016 Oct 19; 27(15):1120-7.
    View in: PubMed
    Score: 0.125
  16. Thioredoxin Reductase Inhibition Attenuates Neonatal Hyperoxic Lung Injury and Enhances Nuclear Factor E2-Related Factor 2 Activation. Am J Respir Cell Mol Biol. 2016 09; 55(3):419-28.
    View in: PubMed
    Score: 0.124
  17. DHA suppresses chronic apoptosis in the lung caused by perinatal inflammation. Am J Physiol Lung Cell Mol Physiol. 2015 Sep 01; 309(5):L441-8.
    View in: PubMed
    Score: 0.114
  18. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation. J Nutr. 2014 Mar; 144(3):258-66.
    View in: PubMed
    Score: 0.103
  19. Perinatal inflammation results in decreased oligodendrocyte numbers in adulthood. Life Sci. 2014 Jan 17; 94(2):164-71.
    View in: PubMed
    Score: 0.102
  20. Riboflavin supplementation does not attenuate hyperoxic lung injury in transgenic (spc-mt)hGR mice. Exp Lung Res. 2011 Apr; 37(3):155-61.
    View in: PubMed
    Score: 0.083
  21. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. J Appl Physiol (1985). 2010 May; 108(5):1347-56.
    View in: PubMed
    Score: 0.079
  22. Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury. Am J Respir Cell Mol Biol. 2008 Dec; 39(6):683-8.
    View in: PubMed
    Score: 0.070
  23. Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen. Pediatr Res. 2007 Dec; 62(6):652-7.
    View in: PubMed
    Score: 0.067
  24. Thioredoxin-related mechanisms in hyperoxic lung injury in mice. Am J Respir Cell Mol Biol. 2007 Oct; 37(4):405-13.
    View in: PubMed
    Score: 0.065
  25. Hyperoxia increases hepatic arginase expression and ornithine production in mice. Toxicol Appl Pharmacol. 2006 Aug 15; 215(1):109-17.
    View in: PubMed
    Score: 0.060
  26. Thioredoxin Reductase-1 Inhibition Augments Endogenous Glutathione-Dependent Antioxidant Responses in Experimental Bronchopulmonary Dysplasia. Oxid Med Cell Longev. 2019; 2019:7945983.
    View in: PubMed
    Score: 0.036
  27. Of mice and men: correlations between microRNA-17~92 cluster expression and promoter methylation in severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2016 Nov 01; 311(5):L981-L984.
    View in: PubMed
    Score: 0.031
  28. The thioredoxin reductase-1 inhibitor aurothioglucose attenuates lung injury and improves survival in a murine model of acute respiratory distress syndrome. Antioxid Redox Signal. 2014 Jun 10; 20(17):2681-91.
    View in: PubMed
    Score: 0.026
  29. Neonatal hyperoxic exposure persistently alters lung secretoglobins and annexin A1. Biomed Res Int. 2013; 2013:408485.
    View in: PubMed
    Score: 0.025
  30. Inhaled nitric oxide prevents 3-nitrotyrosine formation in the lungs of neonatal mice exposed to >95% oxygen. Lung. 2010 Jun; 188(3):217-27.
    View in: PubMed
    Score: 0.020
  31. CoASH and CoASSG levels in lungs of hyperoxic rats as potential biomarkers of intramitochondrial oxidant stresses. Pediatr Res. 2002 Mar; 51(3):346-53.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.