Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Ann West and Paul Cook.
Connection Strength

2.319
  1. Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis. Arch Biochem Biophys. 2015 Oct 15; 584:98-106.
    View in: PubMed
    Score: 0.130
  2. Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme. Arch Biochem Biophys. 2015 Oct 15; 584:20-7.
    View in: PubMed
    Score: 0.130
  3. Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Arch Biochem Biophys. 2012 Jun 01; 522(1):57-61.
    View in: PubMed
    Score: 0.103
  4. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2012 Jan 31; 51(4):857-66.
    View in: PubMed
    Score: 0.101
  5. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Arch Biochem Biophys. 2011 Sep 15; 513(2):71-80.
    View in: PubMed
    Score: 0.098
  6. Contribution of K99 and D319 to substrate binding and catalysis in the saccharopine dehydrogenase reaction. Arch Biochem Biophys. 2011 Oct; 514(1-2):8-15.
    View in: PubMed
    Score: 0.098
  7. Kinetic and chemical mechanisms of homocitrate synthase from Thermus thermophilus. J Biol Chem. 2011 Aug 19; 286(33):29428-29439.
    View in: PubMed
    Score: 0.098
  8. Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts. J Biol Chem. 2010 Jul 02; 285(27):20756-68.
    View in: PubMed
    Score: 0.090
  9. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway. Methods Enzymol. 2010; 471:59-75.
    View in: PubMed
    Score: 0.089
  10. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Biochemistry. 2009 Aug 25; 48(33):8044-50.
    View in: PubMed
    Score: 0.086
  11. Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2009 Aug 04; 48(30):7305-12.
    View in: PubMed
    Score: 0.085
  12. Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae. Biochemistry. 2009 Jun 30; 48(25):5899-907.
    View in: PubMed
    Score: 0.085
  13. Potassium is an activator of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2008 Oct 07; 47(40):10809-15.
    View in: PubMed
    Score: 0.080
  14. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Biochemistry. 2008 Jul 01; 47(26):6851-8.
    View in: PubMed
    Score: 0.079
  15. Overall kinetic mechanism of saccharopine dehydrogenase (L-glutamate forming) from Saccharomyces cerevisiae. Biochemistry. 2008 May 13; 47(19):5417-23.
    View in: PubMed
    Score: 0.078
  16. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2008 Apr 01; 47(13):4169-80.
    View in: PubMed
    Score: 0.077
  17. Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Nov 06; 46(44):12512-21.
    View in: PubMed
    Score: 0.075
  18. Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jun 26; 46(25):7625-36.
    View in: PubMed
    Score: 0.073
  19. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jan 23; 46(3):871-82.
    View in: PubMed
    Score: 0.072
  20. Complete kinetic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jan 23; 46(3):890-8.
    View in: PubMed
    Score: 0.072
  21. Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae. Biochemistry. 2006 Oct 03; 45(39):12136-43.
    View in: PubMed
    Score: 0.070
  22. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2006 Oct 03; 45(39):12156-66.
    View in: PubMed
    Score: 0.070
  23. Crystal structure of the his-tagged saccharopine reductase from Saccharomyces cerevisiae at 1.7-A resolution. Cell Biochem Biophys. 2006; 46(1):17-26.
    View in: PubMed
    Score: 0.067
  24. The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys. 2006; 46(1):43-64.
    View in: PubMed
    Score: 0.067
  25. Regulatory mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. I. Kinetic studies. J Biol Chem. 2005 Sep 09; 280(36):31624-32.
    View in: PubMed
    Score: 0.064
  26. Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry. 2005 Jan 11; 44(1):377-86.
    View in: PubMed
    Score: 0.062
  27. Kinetic mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. Biochemistry. 2004 Sep 21; 43(37):11790-5.
    View in: PubMed
    Score: 0.061
  28. Stabilization and characterization of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. Arch Biochem Biophys. 2004 Jan 15; 421(2):243-54.
    View in: PubMed
    Score: 0.058
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.