Paul Cook to Lysine
This is a "connection" page, showing publications Paul Cook has written about Lysine.
Connection Strength
2.840
-
Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Arch Biochem Biophys. 2012 Jun 01; 522(1):57-61.
Score: 0.392
-
Contribution of K99 and D319 to substrate binding and catalysis in the saccharopine dehydrogenase reaction. Arch Biochem Biophys. 2011 Oct; 514(1-2):8-15.
Score: 0.373
-
A lysine-tyrosine pair carries out acid-base chemistry in the metal ion-dependent pyridine dinucleotide-linked beta-hydroxyacid oxidative decarboxylases. Biochemistry. 2009 Apr 28; 48(16):3565-77.
Score: 0.320
-
Effect of mutation of lysine-120, located at the entry to the active site of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. Biochim Biophys Acta. 2008 Apr; 1784(4):629-37.
Score: 0.292
-
The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys. 2006; 46(1):43-64.
Score: 0.254
-
Lysine 199 is the general acid in the NAD-malic enzyme reaction. Biochemistry. 2000 Oct 03; 39(39):11955-60.
Score: 0.176
-
Lysine 183 is the general base in the 6-phosphogluconate dehydrogenase-catalyzed reaction. Biochemistry. 1999 Aug 31; 38(35):11231-8.
Score: 0.164
-
Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2012 Jan 31; 51(4):857-66.
Score: 0.097
-
The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Arch Biochem Biophys. 2011 Sep 15; 513(2):71-80.
Score: 0.093
-
Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts. J Biol Chem. 2010 Jul 02; 285(27):20756-68.
Score: 0.086
-
Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2009 Aug 04; 48(30):7305-12.
Score: 0.081
-
Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae. Biochemistry. 2009 Jun 30; 48(25):5899-907.
Score: 0.081
-
Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Nov 06; 46(44):12512-21.
Score: 0.072
-
Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2006 Oct 03; 45(39):12156-66.
Score: 0.067
-
Regulatory mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. II. Theory. J Biol Chem. 2005 Sep 09; 280(36):31633-40.
Score: 0.061
-
Regulatory mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. I. Kinetic studies. J Biol Chem. 2005 Sep 09; 280(36):31624-32.
Score: 0.061
-
A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Biochemistry. 2005 Mar 08; 44(9):3626-35.
Score: 0.060
-
A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Biochemistry. 1996 Oct 15; 35(41):13485-93.
Score: 0.034
-
Acid-base chemical mechanism of O-acetylserine sulfhydrylases-A and -B from pH studies. Biochemistry. 1995 Sep 26; 34(38):12311-22.
Score: 0.031
-
Inactivation of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii by pyridoxal 5'-phosphate. Determination of the pH dependence of enzyme-reactant dissociation constants from protection against inactivation. J Biol Chem. 1988 Apr 15; 263(11):5135-40.
Score: 0.019
-
Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J Biol Chem. 2004 Sep 24; 279(39):40737-47.
Score: 0.014
-
pH studies toward the elucidation of the auxiliary catalyst for pig heart aspartate aminotransferase. Biochemistry. 1983 Jan 18; 22(2):375-82.
Score: 0.013