Header Logo

Connection

Paul Cook to Lysine

This is a "connection" page, showing publications Paul Cook has written about Lysine.
Connection Strength

2.840
  1. Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Arch Biochem Biophys. 2012 Jun 01; 522(1):57-61.
    View in: PubMed
    Score: 0.392
  2. Contribution of K99 and D319 to substrate binding and catalysis in the saccharopine dehydrogenase reaction. Arch Biochem Biophys. 2011 Oct; 514(1-2):8-15.
    View in: PubMed
    Score: 0.373
  3. A lysine-tyrosine pair carries out acid-base chemistry in the metal ion-dependent pyridine dinucleotide-linked beta-hydroxyacid oxidative decarboxylases. Biochemistry. 2009 Apr 28; 48(16):3565-77.
    View in: PubMed
    Score: 0.320
  4. Effect of mutation of lysine-120, located at the entry to the active site of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. Biochim Biophys Acta. 2008 Apr; 1784(4):629-37.
    View in: PubMed
    Score: 0.292
  5. The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys. 2006; 46(1):43-64.
    View in: PubMed
    Score: 0.254
  6. Lysine 199 is the general acid in the NAD-malic enzyme reaction. Biochemistry. 2000 Oct 03; 39(39):11955-60.
    View in: PubMed
    Score: 0.176
  7. Lysine 183 is the general base in the 6-phosphogluconate dehydrogenase-catalyzed reaction. Biochemistry. 1999 Aug 31; 38(35):11231-8.
    View in: PubMed
    Score: 0.164
  8. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2012 Jan 31; 51(4):857-66.
    View in: PubMed
    Score: 0.097
  9. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Arch Biochem Biophys. 2011 Sep 15; 513(2):71-80.
    View in: PubMed
    Score: 0.093
  10. Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts. J Biol Chem. 2010 Jul 02; 285(27):20756-68.
    View in: PubMed
    Score: 0.086
  11. Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2009 Aug 04; 48(30):7305-12.
    View in: PubMed
    Score: 0.081
  12. Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae. Biochemistry. 2009 Jun 30; 48(25):5899-907.
    View in: PubMed
    Score: 0.081
  13. Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Nov 06; 46(44):12512-21.
    View in: PubMed
    Score: 0.072
  14. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2006 Oct 03; 45(39):12156-66.
    View in: PubMed
    Score: 0.067
  15. Regulatory mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. II. Theory. J Biol Chem. 2005 Sep 09; 280(36):31633-40.
    View in: PubMed
    Score: 0.061
  16. Regulatory mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. I. Kinetic studies. J Biol Chem. 2005 Sep 09; 280(36):31624-32.
    View in: PubMed
    Score: 0.061
  17. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Biochemistry. 2005 Mar 08; 44(9):3626-35.
    View in: PubMed
    Score: 0.060
  18. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Biochemistry. 1996 Oct 15; 35(41):13485-93.
    View in: PubMed
    Score: 0.034
  19. Acid-base chemical mechanism of O-acetylserine sulfhydrylases-A and -B from pH studies. Biochemistry. 1995 Sep 26; 34(38):12311-22.
    View in: PubMed
    Score: 0.031
  20. Inactivation of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii by pyridoxal 5'-phosphate. Determination of the pH dependence of enzyme-reactant dissociation constants from protection against inactivation. J Biol Chem. 1988 Apr 15; 263(11):5135-40.
    View in: PubMed
    Score: 0.019
  21. Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J Biol Chem. 2004 Sep 24; 279(39):40737-47.
    View in: PubMed
    Score: 0.014
  22. pH studies toward the elucidation of the auxiliary catalyst for pig heart aspartate aminotransferase. Biochemistry. 1983 Jan 18; 22(2):375-82.
    View in: PubMed
    Score: 0.013
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.