Header Logo

Connection

Lynette Rogers to Animals, Newborn

This is a "connection" page, showing publications Lynette Rogers has written about Animals, Newborn.
Connection Strength

1.676
  1. Maternal high-fat diet alters lung development and function in the offspring. Am J Physiol Lung Cell Mol Physiol. 2019 08 01; 317(2):L167-L174.
    View in: PubMed
    Score: 0.152
  2. Alterations in VASP phosphorylation and profilin1 and cofilin1 expression in hyperoxic lung injury and BPD. Respir Res. 2018 Nov 21; 19(1):229.
    View in: PubMed
    Score: 0.148
  3. Perinatal inflammation induces sex-related differences in cardiovascular morbidities in mice. Am J Physiol Heart Circ Physiol. 2018 03 01; 314(3):H573-H579.
    View in: PubMed
    Score: 0.138
  4. miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2017 08 01; 313(2):L339-L349.
    View in: PubMed
    Score: 0.133
  5. Nurr1 expression is modified by inflammation in microglia. Neuroreport. 2016 Oct 19; 27(15):1120-7.
    View in: PubMed
    Score: 0.128
  6. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation. J Nutr. 2014 Mar; 144(3):258-66.
    View in: PubMed
    Score: 0.106
  7. Perinatal inflammation results in decreased oligodendrocyte numbers in adulthood. Life Sci. 2014 Jan 17; 94(2):164-71.
    View in: PubMed
    Score: 0.105
  8. Cyclooxygenase-2 in newborn hyperoxic lung injury. Free Radic Biol Med. 2013 Aug; 61:502-11.
    View in: PubMed
    Score: 0.100
  9. Systemic maternal inflammation and neonatal hyperoxia induces remodeling and left ventricular dysfunction in mice. PLoS One. 2011; 6(9):e24544.
    View in: PubMed
    Score: 0.090
  10. Maternal docosahexaenoic acid supplementation decreases lung inflammation in hyperoxia-exposed newborn mice. J Nutr. 2011 Feb; 141(2):214-22.
    View in: PubMed
    Score: 0.085
  11. Hyperoxia exposure alters hepatic eicosanoid metabolism in newborn mice. Pediatr Res. 2010 Feb; 67(2):144-9.
    View in: PubMed
    Score: 0.080
  12. Alterations of the thioredoxin system by hyperoxia: implications for alveolar development. Am J Respir Cell Mol Biol. 2009 Nov; 41(5):612-9.
    View in: PubMed
    Score: 0.075
  13. Differential responses in the lungs of newborn mouse pups exposed to 85% or >95% oxygen. Pediatr Res. 2009 Jan; 65(1):33-8.
    View in: PubMed
    Score: 0.074
  14. Selenium modulates perinatal pulmonary vascular responses to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2025 May 01; 328(5):L716-L723.
    View in: PubMed
    Score: 0.057
  15. Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice. Redox Biol. 2021 01; 38:101797.
    View in: PubMed
    Score: 0.042
  16. Thioredoxin Reductase-1 Inhibition Augments Endogenous Glutathione-Dependent Antioxidant Responses in Experimental Bronchopulmonary Dysplasia. Oxid Med Cell Longev. 2019; 2019:7945983.
    View in: PubMed
    Score: 0.037
  17. Aurothioglucose does not improve alveolarization or elicit sustained Nrf2 activation in C57BL/6 models of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2018 05 01; 314(5):L736-L742.
    View in: PubMed
    Score: 0.035
  18. Thioredoxin Reductase Inhibition Attenuates Neonatal Hyperoxic Lung Injury and Enhances Nuclear Factor E2-Related Factor 2 Activation. Am J Respir Cell Mol Biol. 2016 09; 55(3):419-28.
    View in: PubMed
    Score: 0.032
  19. Thioredoxin-interacting protein inhibits hypoxia-inducible factor transcriptional activity. Free Radic Biol Med. 2010 Nov 15; 49(9):1361-7.
    View in: PubMed
    Score: 0.021
  20. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. J Appl Physiol (1985). 2010 May; 108(5):1347-56.
    View in: PubMed
    Score: 0.020
  21. Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen. Pediatr Res. 2007 Dec; 62(6):652-7.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.