Header Logo

Jian Xu

TitleProf,Asoc
InstitutionUniversity of Oklahoma Health Sciences Center
DepartmentMedicine Endocrinology
AddressBSEB 325
941 Stanton L Young Blvd
Oklahoma City OK 73104
Email
vCardDownload vCard

    Collapse Biography 
    Collapse education and training
    University of Konstanz, GermanyPhD10/2002Biochemical Pharmacology
    Xinjiang Agricultural University, ChinaMS07/1988Animal Physiology and Biochemistry
    Shannxi Normal University, ChinaBS07/1985Biology
    University of Konstanz, GermanyPostdoc01/2004Biochemical Pharmacology
    Univ. of Tennessee Med. Ctr., TNPostdoc05/2005Cardiovascular Disease
    Univ. of Okla. Heal. Sci. Ctr., OKPostdoc09/2008Diabetic Complications

    Collapse Overview 
    Collapse overview
    Research Interest

    Patients with diabetes are at significantly increased risk for both microvascular and cardiovascular adverse events. This is because diabetes promotes disease in nearly all blood vessel types and sizes. Vascular complications are responsible for most of the morbidity, hospitalizations, and mortality in patients with diabetes. Dysregulated endothelial function is one of the major factors contributing to the development of vascular complications in diabetes. By using cell culture and mouse models, our lab explores endothelial regulated pathways that lead to dysmetabolism, a characteristic of metabolic disorders, including diabetes, insulin resistance, and obesity. Our previous research investigated the roles of endothelial regulation on peripheral angiogenesis and dysregulated inflammation in diabetes. As a logical extension to these studies, our current research centers on mechanisms underlying the endothelial regulation of metabolic disorders. Our long-term goal is to translate our bench-side pre-clinical findings to the bedside clinical practice, by providing insights into the development of much-needed management and therapy for these disorders.

    Mechanisms regulating peripheral angiogenesis in diabetes mellitus
    In diabetes, impaired physiological angiogenesis delays wound healing, exacerbates peripheral limb ischemia, and can even cause cardiac mortality due to a lack of collateral vessel development. However, effective therapies to restore peripheral angiogenesis are elusive. It is unclear how diabetes regulates angiogenesis. We recently found that methylglyoxal (MGO), a metabolite elevated in patients with diabetes, impaired angiogenesis by reducing protein levels of vascular endothelial growth factor receptor 2 (VEGFR2). VEGFR2 is a key angiogenic protein that is downregulated in patients with diabetes and in diabetic mouse models. Our published data showed for the first time that VEGFR2 could be reduced by MGO-activated autophagy in cultured endothelial cells. Building on these data, we seek to understand the role and mechanism of autophagy in diabetic angiogenesis impairment, focusing on autophagy-mediated endothelial cell proliferation, matrix degradation, migration, tube formation, and vessel maturation affected by diabetes. Our goals will be achieved through experiments using genetic and pharmacological approaches in cell culture and mouse models of diabetes. With these approaches, we have identified endothelial autophagy-dependent and independent pathways regulating angiogenesis in diabetes.

    Mechanisms modulating inflammatory response in diabetes mellitus
    Inflammation is a characteristic of both type 1 and type 2 diabetes. Overwhelming evidence demonstrates the association of oxidative stress with vascular inflammatory response in hyperglycemia through mechanisms that are not fully elucidated. Protein degradation by the ubiquitin-proteasome system is central to cell homeostasis and survival. Defects in this process are associated with cancers and neurodegenerative disorders. However, the role of the ubiquitin-proteasome system in diabetes remains largely unknown. Using a proteasome reporter mouse model, we provided the first evidence that early hyperglycemia enhanced 26S proteasome functionality, contributing to elevated endothelial inflammatory response in diabetes. By monitoring 26S proteasome functionality in various mouse models of diabetes, we have identified new endogenous regulators (e.g., eNOS-derived nitric oxide), and new substrates (e.g., O-linked-GlcNAc transferase) that are relevant to vascular inflammation. Consequently, we have begun to understand the significance of protein homeostasis (proteostasis) in diabetes, which could provide insights into the development of therapeutic strategies for diabetes-associated dysregulated inflammation.

    Mechanisms causing metabolic dysfunction in diabetes, obesity, and insulin resistance
    An increasing body of evidence supports the evolving concept that functional interactions between organs/tissues are essential for metabolic homeostasis. Understanding the cause of metabolic dysfunction and diabetes will also require a detailed understanding of how these different tissues and organs work together. The endothelium forms the inner cellular lining of blood vessels by highly metabolically active endothelial cells. The endothelium has long been regarded as an integrated system, like an organ; however, the role and mechanism of endothelium in metabolic homeostasis has just emerged. Our previous studies of the endothelial regulation of cardiovascular complications in diabetes have set a stage on which we will be able to test the role and mechanism of endothelial cross-talk with metabolic organs and tissues. We expect to achieve these goals with genetic and pharmacological approaches in cell co-culture and mouse models of diabetes, obesity, and insulin resistance. Our pilot studies have revealed unexpectedly complex modes of endothelial interactions with metabolic organs/tissues, depending, at least in part, on duration of disease (e.g., diabetes and/or obesity) and locations of impacts (e.g., fat, liver, or skeletal muscle), which warrants further investigations of their clinical implication and translation.

    Collapse Research 
    Collapse research activities and funding
    R01HL130845     (CHEN, HONG)Jan 1, 2016 - Jun 30, 2025
    NIH
    Mechanisms regulating VEGF receptors in diabetic angiogenesis
    Role: Co-Investigator

    P20GM104934     (MA, JIAN-XING)Sep 15, 2007 - Jun 30, 2017
    NIH
    Mentoring Diabetes Research in Oklahoma
    Role: Co-Investigator

    P20RR024215     (MA, JIAN-XING)Sep 15, 2007 - Sep 9, 2012
    NIH
    Mentoring Diabetes Research in Oklahoma
    Role: Co-Investigator

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Wu H, Norton V, Cui K, Zhu B, Bhattacharjee S, Lu YW, Wang B, Shan D, Wong S, Dong Y, Chan SL, Cowan D, Xu J, Bielenberg DR, Zhou C, Chen H. Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Front Cardiovasc Med. 2022; 9:841928. PMID: 35252405; PMCID: PMC8891533.
      Citations: 8     
    2. Li M, Qian M, Kyler K, Xu J. Adipose Tissue-Endothelial Cell Interactions in Obesity-Induced Endothelial Dysfunction. Front Cardiovasc Med. 2021; 8:681581. PMID: 34277732.
      Citations: 9     
    3. Li M, Qian M, Kyler K, Xu J. Endothelial-Vascular Smooth Muscle Cells Interactions in Atherosclerosis. Front Cardiovasc Med. 2018; 5:151. PMID: 30406116.
      Citations: 94     
    4. Rao G, Nkepang G, Xu J, Yari H, Houson H, Teng C, Awasthi V. Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome. Front Chem. 2018; 6:392. PMID: 30280096.
      Citations: 3     
    5. Wu H, Rahman HNA, Dong Y, Liu X, Lee Y, Wen A, To KH, Xiao L, Birsner AE, Bazinet L, Wong S, Song K, Brophy ML, Mahamud MR, Chang B, Cai X, Pasula S, Kwak S, Yang W, Bischoff J, Xu J, Bielenberg DR, Dixon JB, D'Amato RJ, Srinivasan RS, Chen H. Epsin deficiency promotes lymphangiogenesis through regulation of VEGFR3 degradation in diabetes. J Clin Invest. 2018 Aug 31; 128(9):4025-4043. PMID: 30102256; PMCID: PMC6118634.
      Citations: 34     Fields:    Translation:HumansAnimalsCells
    6. Li M, Qian M, Xu J. Vascular Endothelial Regulation of Obesity-Associated Insulin Resistance. Front Cardiovasc Med. 2017; 4:51. PMID: 28848738.
      Citations: 10     
    7. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, Airoldi EM, Ait-Si-Ali S, Akematsu T, Akporiaye ET, Al-Rubeai M, Albaiceta GM, Albanese C, Albani D, Albert ML, Aldudo J, Algül H, Alirezaei M, Alloza I, Almasan A, Almonte-Beceril M, Alnemri ES, Alonso C, Altan-Bonnet N, Altieri DC, Alvarez S, Alvarez-Erviti L, Alves S, Amadoro G, Amano A, Amantini C, Ambrosio S, Amelio I, Amer AO, Amessou M, Amon A, An Z, Anania FA, Andersen SU, Andley UP, Andreadi CK, Andrieu-Abadie N, Anel A, Ann DK, Anoopkumar-Dukie S, Antonioli M, Aoki H, Apostolova N, Aquila S, Aquilano K, Araki K, Arama E, Aranda A, Araya J, Arcaro A, Arias E, Arimoto H, Ariosa AR, Armstrong JL, Arnould T, Arsov I, Asanuma K, Askanas V, Asselin E, Atarashi R, Atherton SS, Atkin JD, Attardi LD, Auberger P, Auburger G, Aurelian L, Autelli R, Avagliano L, Avantaggiati ML, Avrahami L, Awale S, Azad N, Bachetti T, Backer JM, Bae DH, Bae JS, Bae ON, Bae SH, Baehrecke EH, Baek SH, Baghdiguian S, Bagniewska-Zadworna A, Bai H, Bai J, Bai XY, Bailly Y, Balaji KN, Balduini W, Ballabio A, Balzan R, Banerjee R, Bánhegyi G, Bao H, Barbeau B, Barrachina MD, Barreiro E, Bartel B, Bartolomé A, Bassham DC, Bassi MT, Bast RC, Basu A, Batista MT, Batoko H, Battino M, Bauckman K, Baumgarner BL, Bayer KU, Beale R, Beaulieu JF, Beck GR, Becker C, Beckham JD, Bédard PA, Bednarski PJ, Begley TJ, Behl C, Behrends C, Behrens GM, Behrns KE, Bejarano E, Belaid A, Belleudi F, Bénard G, Berchem G, Bergamaschi D, Bergami M, Berkhout B, Berliocchi L, Bernard A, Bernard M, Bernassola F, Bertolotti A, Bess AS, Besteiro S, Bettuzzi S, Bhalla S, Bhattacharyya S, Bhutia SK, Biagosch C, Bianchi MW, Biard-Piechaczyk M, Billes V, Bincoletto C, Bingol B, Bird SW, Bitoun M, Bjedov I, Blackstone C, Blanc L, Blanco GA, Blomhoff HK, Boada-Romero E, Böckler S, Boes M, Boesze-Battaglia K, Boise LH, Bolino A, Boman A, Bonaldo P, Bordi M, Bosch J, Botana LM, Botti J, Bou G, Bouché M, Bouchecareilh M, Boucher MJ, Boulton ME, Bouret SG, Boya P, Boyer-Guittaut M, Bozhkov PV, Brady N, Braga VM, Brancolini C, Braus GH, Bravo-San Pedro JM, Brennan LA, Bresnick EH, Brest P, Bridges D, Bringer MA, Brini M, Brito GC, Brodin B, Brookes PS, Brown EJ, Brown K, Broxmeyer HE, Bruhat A, Brum PC, Brumell JH, Brunetti-Pierri N, Bryson-Richardson RJ, Buch S, Buchan AM, Budak H, Bulavin DV, Bultman SJ, Bultynck G, Bumbasirevic V, Burelle Y, Burke RE, Burmeister M, Bütikofer P, Caberlotto L, Cadwell K, Cahova M, Cai D, Cai J, Cai Q, Calatayud S, Camougrand N, Campanella M, Campbell GR, Campbell M, Campello S, Candau R, Caniggia I, Cantoni L, Cao L, Caplan AB, Caraglia M, Cardinali C, Cardoso SM, Carew JS, Carleton LA, Carlin CR, Carloni S, Carlsson SR, Carmona-Gutierrez D, Carneiro LA, Carnevali O, Carra S, Carrier A, Carroll B, Casas C, Casas J, Cassinelli G, Castets P, Castro-Obregon S, Cavallini G, Ceccherini I, Cecconi F, Cederbaum AI, Ceña V, Cenci S, Cerella C, Cervia D, Cetrullo S, Chaachouay H, Chae HJ, Chagin AS, Chai CY, Chakrabarti G, Chamilos G, Chan EY, Chan MT, Chandra D, Chandra P, Chang CP, Chang RC, Chang TY, Chatham JC, Chatterjee S, Chauhan S, Che Y, Cheetham ME, Cheluvappa R, Chen CJ, Chen G, Chen GC, Chen G, Chen H, Chen JW, Chen JK, Chen M, Chen M, Chen P, Chen Q, Chen Q, Chen SD, Chen S, Chen SS, Chen W, Chen WJ, Chen WQ, Chen W, Chen X, Chen YH, Chen YG, Chen Y, Chen Y, Chen Y, Chen YJ, Chen YQ, Chen Y, Chen Z, Chen Z, Cheng A, Cheng CH, Cheng H, Cheong H, Cherry S, Chesney J, Cheung CH, Chevet E, Chi HC, Chi SG, Chiacchiera F, Chiang HL, Chiarelli R, Chiariello M, Chieppa M, Chin LS, Chiong M, Chiu GN, Cho DH, Cho SG, Cho WC, Cho YY, Cho YS, Choi AM, Choi EJ, Choi EK, Choi J, Choi ME, Choi SI, Chou TF, Chouaib S, Choubey D, Choubey V, Chow KC, Chowdhury K, Chu CT, Chuang TH, Chun T, Chung H, Chung T, Chung YL, Chwae YJ, Cianfanelli V, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016; 12(1):1-222. PMID: 26799652.
      Citations: 2817     Fields:    Translation:HumansAnimals
    8. Xing J, Liu H, Yang H, Chen R, Chen Y, Xu J. Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy. PLoS One. 2014; 9(12):e116165. PMID: 25541949.
      Citations: 9     Fields:    Translation:HumansAnimalsCells
    9. Liu H, Wang Z, Yu S, Xu J. Proteasomal degradation of O-GlcNAc transferase elevates hypoxia-induced vascular endothelial inflammatory response†. Cardiovasc Res. 2014 Jul 01; 103(1):131-9. PMID: 24788415.
      Citations: 21     Fields:    Translation:HumansAnimalsCells
    10. Li Y, Liu H, Xu QS, Du YG, Xu J. Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-?B and endothelial inflammatory response. Carbohydr Polym. 2014 Jan; 99:568-78. PMID: 24274545.
      Citations: 35     Fields:    Translation:HumansAnimalsCells
    Xu's Networks
    Click the
    Explore
    buttons for more information and interactive visualizations!
    Concepts (51)
    Explore
    _
    Co-Authors (6)
    Explore
    _
    Similar People (60)
    Explore
    _
    Same Department Expand Description
    Explore
    _
    Physical Neighbors
    _