Header Logo

Connection

Paul Cook to NADP

This is a "connection" page, showing publications Paul Cook has written about NADP.
Connection Strength

1.582
  1. Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme. Biochim Biophys Acta. 2008 Dec; 1784(12):2059-64.
    View in: PubMed
    Score: 0.309
  2. Proper orientation of the nicotinamide ring of NADP is important for the precatalytic conformational change in the 6-phosphogluconate dehydrogenase reaction. Biochemistry. 2008 Feb 19; 47(7):1862-70.
    View in: PubMed
    Score: 0.297
  3. The 2'-phosphate of NADP is responsible for proper orientation of the nicotinamide ring in the oxidative decarboxylation reaction catalyzed by sheep liver 6-phosphogluconate dehydrogenase. J Biol Chem. 2006 Dec 01; 281(48):36803-10.
    View in: PubMed
    Score: 0.270
  4. Oxidative decarboxylation of 6-phosphogluconate by 6-phosphogluconate dehydrogenase proceeds by a stepwise mechanism with NADP and APADP as oxidants. Biochemistry. 1998 Sep 08; 37(36):12596-602.
    View in: PubMed
    Score: 0.155
  5. The 2'-phosphate of NADP is critical for optimum productive binding to 6-phosphogluconate dehydrogenase from Candida utilis. Arch Biochem Biophys. 1993 Sep; 305(2):551-8.
    View in: PubMed
    Score: 0.110
  6. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction. Biochemistry. 1991 Jun 11; 30(23):5755-63.
    View in: PubMed
    Score: 0.094
  7. Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae. Biochemistry. 2009 Jun 30; 48(25):5899-907.
    View in: PubMed
    Score: 0.082
  8. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum. Biochemistry. 2007 Dec 18; 46(50):14578-88.
    View in: PubMed
    Score: 0.073
  9. Role of methionine-13 in the catalytic mechanism of 6-phosphogluconate dehydrogenase from sheep liver. Biochemistry. 2005 Feb 22; 44(7):2432-40.
    View in: PubMed
    Score: 0.061
  10. Stepwise versus concerted oxidative decarboxylation catalyzed by malic enzyme: a reinvestigation. Biochemistry. 1994 Mar 01; 33(8):2096-103.
    View in: PubMed
    Score: 0.028
  11. Overall kinetic mechanism of 6-phosphogluconate dehydrogenase from Candida utilis. Biochemistry. 1993 Mar 02; 32(8):2036-40.
    View in: PubMed
    Score: 0.026
  12. Acid base catalytic mechanism of the dihydropyrimidine dehydrogenase from pH studies. J Biol Chem. 1993 Feb 15; 268(5):3407-13.
    View in: PubMed
    Score: 0.026
  13. Use of primary deuterium and 15N isotope effects to deduce the relative rates of steps in the mechanisms of alanine and glutamate dehydrogenases. Biochemistry. 1988 Jun 28; 27(13):4814-22.
    View in: PubMed
    Score: 0.019
  14. Kinetic studies to determine the mechanism of regulation of bovine liver glutamate dehydrogenase by nucleotide effectors. Biochemistry. 1982 Jan 05; 21(1):113-6.
    View in: PubMed
    Score: 0.012
  15. Purification and characterization of dihydropyrimidine dehydrogenase from Alcaligenes eutrophus. Arch Biochem Biophys. 1996 Aug 01; 332(1):175-82.
    View in: PubMed
    Score: 0.008
  16. Kinetic mechanism of dihydropyrimidine dehydrogenase from pig liver. J Biol Chem. 1990 Aug 05; 265(22):12966-72.
    View in: PubMed
    Score: 0.006
  17. The kinetic mechanism of human placental aldose reductase and aldehyde reductase II. Arch Biochem Biophys. 1988 Mar; 261(2):264-74.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.