Paul Cook to Saccharomyces cerevisiae
This is a "connection" page, showing publications Paul Cook has written about Saccharomyces cerevisiae.
Connection Strength
5.811
-
Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis. Arch Biochem Biophys. 2015 Oct 15; 584:98-106.
Score: 0.442
-
Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme. Arch Biochem Biophys. 2015 Oct 15; 584:20-7.
Score: 0.441
-
Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Arch Biochem Biophys. 2012 Jun 01; 522(1):57-61.
Score: 0.349
-
Contribution of K99 and D319 to substrate binding and catalysis in the saccharopine dehydrogenase reaction. Arch Biochem Biophys. 2011 Oct; 514(1-2):8-15.
Score: 0.332
-
Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2009 Aug 04; 48(30):7305-12.
Score: 0.290
-
Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae. Biochemistry. 2009 Jun 30; 48(25):5899-907.
Score: 0.288
-
Potassium is an activator of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2008 Oct 07; 47(40):10809-15.
Score: 0.272
-
Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Biochemistry. 2008 Jul 01; 47(26):6851-8.
Score: 0.267
-
Overall kinetic mechanism of saccharopine dehydrogenase (L-glutamate forming) from Saccharomyces cerevisiae. Biochemistry. 2008 May 13; 47(19):5417-23.
Score: 0.265
-
Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2008 Apr 01; 47(13):4169-80.
Score: 0.263
-
Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jun 26; 46(25):7625-36.
Score: 0.249
-
A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jan 23; 46(3):871-82.
Score: 0.243
-
Complete kinetic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jan 23; 46(3):890-8.
Score: 0.243
-
Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae. Biochemistry. 2006 Oct 03; 45(39):12136-43.
Score: 0.238
-
Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2006 Oct 03; 45(39):12156-66.
Score: 0.238
-
Regulatory mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. II. Theory. J Biol Chem. 2005 Sep 09; 280(36):31633-40.
Score: 0.216
-
Regulatory mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. I. Kinetic studies. J Biol Chem. 2005 Sep 09; 280(36):31624-32.
Score: 0.216
-
Kinetic mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. Biochemistry. 2004 Sep 21; 43(37):11790-5.
Score: 0.207
-
Stabilization and characterization of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. Arch Biochem Biophys. 2004 Jan 15; 421(2):243-54.
Score: 0.197
-
Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2012 Jan 31; 51(4):857-66.
Score: 0.086
-
Mechanism of the aromatic aminotransferase encoded by the Aro8 gene from Saccharomyces cerevisiae. Arch Biochem Biophys. 2011 Dec 01; 516(1):67-74.
Score: 0.084
-
The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Arch Biochem Biophys. 2011 Sep 15; 513(2):71-80.
Score: 0.083
-
Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts. J Biol Chem. 2010 Jul 02; 285(27):20756-68.
Score: 0.076
-
Kinetic studies of the yeast His-Asp phosphorelay signaling pathway. Methods Enzymol. 2010; 471:59-75.
Score: 0.075
-
Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Nov 06; 46(44):12512-21.
Score: 0.064
-
Product dependence of deuterium isotope effects in enzyme-catalyzed reactions. Biochemistry. 1993 Feb 23; 32(7):1795-802.
Score: 0.023
-
Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Biochemistry. 2009 Aug 25; 48(33):8044-50.
Score: 0.018
-
Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry. 2005 Jan 11; 44(1):377-86.
Score: 0.013
-
Solvent isotope effects on the reaction catalyzed by yeast hexokinase. Eur J Biochem. 1983 Aug 15; 134(3):571-4.
Score: 0.012
-
pH variation of isotope effects in enzyme-catalyzed reactions. 1. Isotope- and pH-dependent steps the same. Biochemistry. 1981 Mar 31; 20(7):1797-805.
Score: 0.010
-
pH variation of isotope effects in enzyme-catalyzed reactions. 2. Isotope-dependent step not pH dependent. Kinetic mechanism of alcohol dehydrogenase. Biochemistry. 1981 Mar 31; 20(7):1805-16.
Score: 0.010