Header Logo

Connection

Paul Cook to Ascaris suum

This is a "connection" page, showing publications Paul Cook has written about Ascaris suum.
Connection Strength

2.735
  1. Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme. Biochim Biophys Acta. 2008 Dec; 1784(12):2059-64.
    View in: PubMed
    Score: 0.311
  2. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction. Biochemistry. 2008 Feb 26; 47(8):2539-46.
    View in: PubMed
    Score: 0.300
  3. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum. Biochemistry. 2007 Dec 18; 46(50):14578-88.
    View in: PubMed
    Score: 0.296
  4. Optimum activity of the phosphofructokinase from Ascaris suum requires more than one metal ion. Biochemistry. 2006 Feb 21; 45(7):2453-60.
    View in: PubMed
    Score: 0.262
  5. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Biochemistry. 2005 Mar 08; 44(9):3626-35.
    View in: PubMed
    Score: 0.245
  6. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites. Biochemistry. 2003 Aug 19; 42(32):9712-21.
    View in: PubMed
    Score: 0.220
  7. Expression, purification, and characterization of the recombinant NAD-malic enzyme from Ascaris suum. Protein Expr Purif. 1997 Jun; 10(1):51-4.
    View in: PubMed
    Score: 0.143
  8. Isotope partitioning with Ascaris suum phosphofructokinase is consistent with an ordered kinetic mechanism. Biochemistry. 1996 Apr 30; 35(17):5451-7.
    View in: PubMed
    Score: 0.133
  9. A pH-dependent allosteric transition in Ascaris suum phosphofructokinase distinct from that observed with fructose 2,6-bisphosphate. Arch Biochem Biophys. 1995 Oct 01; 322(2):410-6.
    View in: PubMed
    Score: 0.128
  10. Acid-base catalytic mechanism and pH dependence of fructose 2,6-bisphosphate activation of the Ascaris suum phosphofructokinase. Biochemistry. 1995 Jun 20; 34(24):7781-7.
    View in: PubMed
    Score: 0.125
  11. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum. Biochemistry. 1995 Mar 14; 34(10):3253-60.
    View in: PubMed
    Score: 0.123
  12. Mechanism of activation of the NAD-malic enzyme from Ascaris suum by fumarate. Arch Biochem Biophys. 1992 Dec; 299(2):214-9.
    View in: PubMed
    Score: 0.105
  13. Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site. J Biol Chem. 2003 Sep 26; 278(39):38051-8.
    View in: PubMed
    Score: 0.055
  14. Lysine 199 is the general acid in the NAD-malic enzyme reaction. Biochemistry. 2000 Oct 03; 39(39):11955-60.
    View in: PubMed
    Score: 0.045
  15. Mapping the active site topography of the NAD-malic enzyme via alanine-scanning site-directed mutagenesis. Biochemistry. 1999 Aug 10; 38(32):10527-32.
    View in: PubMed
    Score: 0.042
  16. Kinetic characterization of a T-state of Ascaris suum phosphofructokinase with heterotropic negative cooperativity by ATP eliminated. Arch Biochem Biophys. 1999 May 15; 365(2):335-43.
    View in: PubMed
    Score: 0.041
  17. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Biochemistry. 1999 Apr 06; 38(14):4398-402.
    View in: PubMed
    Score: 0.041
  18. Role of the divalent metal ion in the NAD:malic enzyme reaction: an ESEEM determination of the ground state conformation of malate in the E:Mn:malate complex. Protein Sci. 1996 Aug; 5(8):1648-54.
    View in: PubMed
    Score: 0.034
  19. Comparison of the substrate specificities of cAMP-dependent protein kinase from bovine heart and Ascaris suum muscle. Biol Chem Hoppe Seyler. 1996 Mar; 377(3):203-9.
    View in: PubMed
    Score: 0.033
  20. Pre-steady-state kinetics reveal a slow isomerization of the enzyme-NAD complex in the NAD-malic enzyme reaction. Biochemistry. 1993 Mar 02; 32(8):1928-34.
    View in: PubMed
    Score: 0.027
  21. Cloning and nucleotide sequence of a full-length cDNA encoding Ascaris suum malic enzyme. Arch Biochem Biophys. 1993 Jan; 300(1):231-7.
    View in: PubMed
    Score: 0.026
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.