Header Logo

Connection

Paul Cook to Substrate Specificity

This is a "connection" page, showing publications Paul Cook has written about Substrate Specificity.
Connection Strength

1.193
  1. Contribution of K99 and D319 to substrate binding and catalysis in the saccharopine dehydrogenase reaction. Arch Biochem Biophys. 2011 Oct; 514(1-2):8-15.
    View in: PubMed
    Score: 0.093
  2. Overall kinetic mechanism of saccharopine dehydrogenase (L-glutamate forming) from Saccharomyces cerevisiae. Biochemistry. 2008 May 13; 47(19):5417-23.
    View in: PubMed
    Score: 0.074
  3. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2008 Apr 01; 47(13):4169-80.
    View in: PubMed
    Score: 0.074
  4. Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jun 26; 46(25):7625-36.
    View in: PubMed
    Score: 0.070
  5. Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae. Biochemistry. 2006 Oct 03; 45(39):12136-43.
    View in: PubMed
    Score: 0.067
  6. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Biochemistry. 2005 Mar 08; 44(9):3626-35.
    View in: PubMed
    Score: 0.060
  7. The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol. Arch Biochem Biophys. 2005 Jan 01; 433(1):85-95.
    View in: PubMed
    Score: 0.059
  8. Kinetic mechanism of the serine acetyltransferase from Haemophilus influenzae. Arch Biochem Biophys. 2004 Sep 15; 429(2):115-22.
    View in: PubMed
    Score: 0.058
  9. Characterization of the S272A,D site-directed mutations of O-acetylserine sulfhydrylase: involvement of the pyridine ring in the alpha,beta-elimination reaction. Biochemistry. 2003 Jan 14; 42(1):106-13.
    View in: PubMed
    Score: 0.052
  10. Alternative substrates for malic enzyme: oxidative decarboxylation of L-aspartate. Biochemistry. 2002 Oct 08; 41(40):12200-3.
    View in: PubMed
    Score: 0.051
  11. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Biochemistry. 1999 Apr 06; 38(14):4398-402.
    View in: PubMed
    Score: 0.040
  12. Multiple isotope effects as a probe of proton and hydride transfer in the 6-phosphogluconate dehydrogenase reaction. Biochemistry. 1998 Nov 10; 37(45):15698-702.
    View in: PubMed
    Score: 0.039
  13. Oxidative decarboxylation of 6-phosphogluconate by 6-phosphogluconate dehydrogenase proceeds by a stepwise mechanism with NADP and APADP as oxidants. Biochemistry. 1998 Sep 08; 37(36):12596-602.
    View in: PubMed
    Score: 0.038
  14. Kinetic and chemical mechanisms of the sheep liver 6-phosphogluconate dehydrogenase. Arch Biochem Biophys. 1996 Dec 15; 336(2):215-23.
    View in: PubMed
    Score: 0.034
  15. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum. Biochemistry. 1995 Mar 14; 34(10):3253-60.
    View in: PubMed
    Score: 0.030
  16. Lanthanide pyrophosphates as substrates for the pyrophosphate-dependent phosphofructokinases from Propionibacterium freudenreichii and Phaseolus aureus: evidence for a second metal ion required for reaction. Biochemistry. 1994 Feb 22; 33(7):1663-7.
    View in: PubMed
    Score: 0.028
  17. Inhibition of human ?-glutamyl transpeptidase: development of more potent, physiologically relevant, uncompetitive inhibitors. Biochem J. 2013 Mar 15; 450(3):547-57.
    View in: PubMed
    Score: 0.026
  18. Chemical mechanism of 6-phosphogluconate dehydrogenase from Candida utilis from pH studies. Biochemistry. 1993 Mar 02; 32(8):2041-6.
    View in: PubMed
    Score: 0.026
  19. Mechanism of activation of the NAD-malic enzyme from Ascaris suum by fumarate. Arch Biochem Biophys. 1992 Dec; 299(2):214-9.
    View in: PubMed
    Score: 0.026
  20. pH dependence of the absorbance and 31P NMR spectra of O-acetylserine sulfhydrylase in the absence and presence of O-acetyl-L-serine. Biochemistry. 1992 Mar 03; 31(8):2298-303.
    View in: PubMed
    Score: 0.024
  21. Mechanism of the aromatic aminotransferase encoded by the Aro8 gene from Saccharomyces cerevisiae. Arch Biochem Biophys. 2011 Dec 01; 516(1):67-74.
    View in: PubMed
    Score: 0.024
  22. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction. Biochemistry. 1991 Jun 11; 30(23):5755-63.
    View in: PubMed
    Score: 0.023
  23. Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem. 2011 Jul 15; 414(2):208-14.
    View in: PubMed
    Score: 0.023
  24. Reaction product affinity regulates activation of human sulfotransferase 1A1 PAP sulfation. Arch Biochem Biophys. 2011 Feb 15; 506(2):137-41.
    View in: PubMed
    Score: 0.022
  25. Exploring O-acetylserine sulfhydrylase-B isoenzyme from Salmonella typhimurium by fluorescence spectroscopy. Arch Biochem Biophys. 2011 Jan 15; 505(2):178-85.
    View in: PubMed
    Score: 0.022
  26. A novel, species-specific class of uncompetitive inhibitors of gamma-glutamyl transpeptidase. J Biol Chem. 2009 Apr 03; 284(14):9059-65.
    View in: PubMed
    Score: 0.020
  27. Use of primary deuterium and 15N isotope effects to deduce the relative rates of steps in the mechanisms of alanine and glutamate dehydrogenases. Biochemistry. 1988 Jun 28; 27(13):4814-22.
    View in: PubMed
    Score: 0.019
  28. Kinetics and mechanism of benzoylformate decarboxylase using 13C and solvent deuterium isotope effects on benzoylformate and benzoylformate analogues. Biochemistry. 1988 Mar 22; 27(6):2197-205.
    View in: PubMed
    Score: 0.018
  29. Bisubstrate inhibition: Theory and application to N-acetyltransferases. Biochemistry. 2006 Dec 12; 45(49):14788-94.
    View in: PubMed
    Score: 0.017
  30. Carbohydrate substrate specificity of bacterial and plant pyrophosphate-dependent phosphofructokinases. Biochemistry. 1986 Aug 12; 25(16):4674-81.
    View in: PubMed
    Score: 0.017
  31. Dihydropyrimidine amidohydrolases and dihydroorotases share the same origin and several enzymatic properties. Nucleic Acids Res. 2003 Mar 15; 31(6):1683-92.
    View in: PubMed
    Score: 0.013
  32. Comparison of the substrate specificities of cAMP-dependent protein kinase from bovine heart and Ascaris suum muscle. Biol Chem Hoppe Seyler. 1996 Mar; 377(3):203-9.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.