Header Logo

Connection

Paul Cook to Oxidation-Reduction

This is a "connection" page, showing publications Paul Cook has written about Oxidation-Reduction.
Connection Strength

0.688
  1. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Arch Biochem Biophys. 2011 Sep 15; 513(2):71-80.
    View in: PubMed
    Score: 0.087
  2. A lysine-tyrosine pair carries out acid-base chemistry in the metal ion-dependent pyridine dinucleotide-linked beta-hydroxyacid oxidative decarboxylases. Biochemistry. 2009 Apr 28; 48(16):3565-77.
    View in: PubMed
    Score: 0.075
  3. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2008 Apr 01; 47(13):4169-80.
    View in: PubMed
    Score: 0.069
  4. Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum. Biochemistry. 2007 Dec 18; 46(50):14578-88.
    View in: PubMed
    Score: 0.068
  5. Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jun 26; 46(25):7625-36.
    View in: PubMed
    Score: 0.065
  6. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Biochemistry. 1999 Apr 06; 38(14):4398-402.
    View in: PubMed
    Score: 0.037
  7. Oxidative decarboxylation of 6-phosphogluconate by 6-phosphogluconate dehydrogenase proceeds by a stepwise mechanism with NADP and APADP as oxidants. Biochemistry. 1998 Sep 08; 37(36):12596-602.
    View in: PubMed
    Score: 0.036
  8. Secondary tritium and solvent deuterium isotope effects as a probe of the reaction catalyzed by porcine recombinant dihydropyrimidine dehydrogenase. Biochemistry. 1998 Jun 23; 37(25):9156-9.
    View in: PubMed
    Score: 0.035
  9. Metal ion activator effects on intrinsic isotope effects for hydride transfer from decarboxylation in the reaction catalyzed by the NAD-malic enzyme from Ascaris suum. Biochemistry. 1995 Mar 14; 34(10):3253-60.
    View in: PubMed
    Score: 0.028
  10. Stepwise versus concerted oxidative decarboxylation catalyzed by malic enzyme: a reinvestigation. Biochemistry. 1994 Mar 01; 33(8):2096-103.
    View in: PubMed
    Score: 0.026
  11. Pre-steady-state kinetics reveal a slow isomerization of the enzyme-NAD complex in the NAD-malic enzyme reaction. Biochemistry. 1993 Mar 02; 32(8):1928-34.
    View in: PubMed
    Score: 0.024
  12. Overall kinetic mechanism of 6-phosphogluconate dehydrogenase from Candida utilis. Biochemistry. 1993 Mar 02; 32(8):2036-40.
    View in: PubMed
    Score: 0.024
  13. Acid base catalytic mechanism of the dihydropyrimidine dehydrogenase from pH studies. J Biol Chem. 1993 Feb 15; 268(5):3407-13.
    View in: PubMed
    Score: 0.024
  14. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction. Biochemistry. 1991 Jun 11; 30(23):5755-63.
    View in: PubMed
    Score: 0.022
  15. Kinetic mechanism of NAD:malic enzyme from Ascaris suum in the direction of reductive carboxylation. J Biol Chem. 1991 Feb 15; 266(5):2732-8.
    View in: PubMed
    Score: 0.021
  16. pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction reactions catalyzed by malic enzyme. Biochemistry. 1986 Jul 01; 25(13):3752-9.
    View in: PubMed
    Score: 0.015
  17. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies. Biochemistry. 1986 Jan 14; 25(1):227-36.
    View in: PubMed
    Score: 0.015
  18. The pH dependence of the reductive carboxylation of pyruvate by malic enzyme. Biochim Biophys Acta. 1985 Jun 10; 829(2):295-8.
    View in: PubMed
    Score: 0.014
  19. Stereoselective preparation of deuterated reduced nicotinamide adenine nucleotides and substrates by enzymatic synthesis. Anal Biochem. 1979 Jul 15; 96(2):334-40.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.