Paul Cook to Binding Sites
This is a "connection" page, showing publications Paul Cook has written about Binding Sites.
Connection Strength
1.792
-
Role of residues in the adenosine binding site of NAD of the Ascaris suum malic enzyme. Biochim Biophys Acta. 2008 Dec; 1784(12):2059-64.
Score: 0.073
-
Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Biochemistry. 2008 Jul 01; 47(26):6851-8.
Score: 0.072
-
Roles of histidines 154 and 189 and aspartate 139 in the active site of serine acetyltransferase from Haemophilus influenzae. Biochemistry. 2008 Jun 17; 47(24):6322-8.
Score: 0.072
-
Role of Histidine-152 in cofactor orientation in the PLP-dependent O-acetylserine sulfhydrylase reaction. Arch Biochem Biophys. 2008 Apr 15; 472(2):115-25.
Score: 0.070
-
Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction. Biochemistry. 2008 Feb 26; 47(8):2539-46.
Score: 0.070
-
Effect of mutation of lysine-120, located at the entry to the active site of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. Biochim Biophys Acta. 2008 Apr; 1784(4):629-37.
Score: 0.070
-
Multiple roles of arginine 181 in binding and catalysis in the NAD-malic enzyme from Ascaris suum. Biochemistry. 2007 Dec 18; 46(50):14578-88.
Score: 0.069
-
Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes. Biochemistry. 2007 Jul 17; 46(28):8315-30.
Score: 0.067
-
Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Jun 26; 46(25):7625-36.
Score: 0.067
-
Role of the S128, H186, and N187 triad in substrate binding and decarboxylation in the sheep liver 6-phosphogluconate dehydrogenase reaction. Biochemistry. 2006 Oct 24; 45(42):12680-6.
Score: 0.064
-
Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2006 Oct 03; 45(39):12156-66.
Score: 0.064
-
The 2'-phosphate of NADP is responsible for proper orientation of the nicotinamide ring in the oxidative decarboxylation reaction catalyzed by sheep liver 6-phosphogluconate dehydrogenase. J Biol Chem. 2006 Dec 01; 281(48):36803-10.
Score: 0.064
-
Importance in catalysis of the 6-phosphate-binding site of 6-phosphogluconate in sheep liver 6-phosphogluconate dehydrogenase. J Biol Chem. 2006 Sep 01; 281(35):25568-76.
Score: 0.063
-
The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol. Arch Biochem Biophys. 2005 Jan 01; 433(1):85-95.
Score: 0.057
-
Dihydropyrimidine dehydrogenase: a flavoprotein with four iron-sulfur clusters. Biochim Biophys Acta. 2004 Sep 01; 1701(1-2):61-74.
Score: 0.055
-
Structure and mechanism of O-acetylserine sulfhydrylase. J Biol Chem. 2004 Jun 25; 279(26):26803-6.
Score: 0.054
-
Characterization of the S272A,D site-directed mutations of O-acetylserine sulfhydrylase: involvement of the pyridine ring in the alpha,beta-elimination reaction. Biochemistry. 2003 Jan 14; 42(1):106-13.
Score: 0.049
-
Detection of intermediates in reactions catalyzed by PLP-dependent enzymes: O-acetylserine sulfhydrylase and serine-glyoxalate aminotransferase. Methods Enzymol. 2002; 354:223-37.
Score: 0.046
-
Substitution of pyridoxal 5'-phosphate in D-serine dehydratase from Escherichia coli by cofactor analogues provides information on cofactor binding and catalysis. J Biol Chem. 1999 Dec 24; 274(52):36935-43.
Score: 0.040
-
Mapping the active site topography of the NAD-malic enzyme via alanine-scanning site-directed mutagenesis. Biochemistry. 1999 Aug 10; 38(32):10527-32.
Score: 0.039
-
Time-resolved fluorescence of O-acetylserine sulfhydrylase. Biochim Biophys Acta. 1999 Jan 11; 1429(2):317-30.
Score: 0.037
-
Cysteine 42 is important for maintaining an integral active site for O-acetylserine sulfhydrylase resulting in the stabilization of the alpha-aminoacrylate intermediate. Biochemistry. 1998 Jul 28; 37(30):10597-604.
Score: 0.036
-
A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Biochemistry. 1996 Oct 15; 35(41):13485-93.
Score: 0.032
-
Role of the divalent metal ion in the NAD:malic enzyme reaction: an ESEEM determination of the ground state conformation of malate in the E:Mn:malate complex. Protein Sci. 1996 Aug; 5(8):1648-54.
Score: 0.032
-
Resolution of pyridoxal 5'-phosphate from O-acetylserine sulfhydrylase from Salmonella typhimurium and reconstitution of apoenzyme with cofactor and cofactor analogues as a probe of the cofactor binding site. Arch Biochem Biophys. 1995 Dec 01; 324(1):71-7.
Score: 0.030
-
Acid-base chemical mechanism of O-acetylserine sulfhydrylases-A and -B from pH studies. Biochemistry. 1995 Sep 26; 34(38):12311-22.
Score: 0.030
-
Lanthanide pyrophosphates as substrates for the pyrophosphate-dependent phosphofructokinases from Propionibacterium freudenreichii and Phaseolus aureus: evidence for a second metal ion required for reaction. Biochemistry. 1994 Feb 22; 33(7):1663-7.
Score: 0.027
-
Product binding to the alpha-carboxyl subsite results in a conformational change at the active site of O-acetylserine sulfhydrylase-A: evidence from fluorescence spectroscopy. Biochemistry. 1994 Feb 22; 33(7):1674-83.
Score: 0.027
-
Acid-base catalytic mechanism of dihydropyrimidinase from pH studies. Biochemistry. 1993 May 18; 32(19):5160-6.
Score: 0.025
-
Kinetic mechanism of the adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit in the direction of magnesium adenosine 5'-diphosphate phosphorylation. Biochemistry. 1992 Oct 20; 31(41):9986-92.
Score: 0.024
-
pH dependence of the absorbance and 31P NMR spectra of O-acetylserine sulfhydrylase in the absence and presence of O-acetyl-L-serine. Biochemistry. 1992 Mar 03; 31(8):2298-303.
Score: 0.023
-
Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate. Biochemistry. 1991 Jun 11; 30(23):5764-9.
Score: 0.022
-
Kinetics of activated thrombin-activatable fibrinolysis inhibitor (TAFIa)-catalyzed cleavage of C-terminal lysine residues of fibrin degradation products and removal of plasminogen-binding sites. J Biol Chem. 2011 Jun 03; 286(22):19280-6.
Score: 0.022
-
pH dependence of the kinetic parameters for the pyrophosphate-dependent phosphofructokinase reaction supports a proton-shuttle mechanism. Biochemistry. 1989 May 16; 28(10):4155-60.
Score: 0.019
-
Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2007 Nov 06; 46(44):12512-21.
Score: 0.017
-
Chemical mechanism of the adenosine cyclic 3',5'-monophosphate dependent protein kinase from pH studies. Biochemistry. 1987 Jun 30; 26(13):4118-25.
Score: 0.017
-
Modification of an arginine residue essential for the activity of NAD-malic enzyme from Ascaris suum. Arch Biochem Biophys. 1987 May 15; 255(1):8-13.
Score: 0.017
-
Diethylpyrocarbonate inactivation of NAD-malic enzyme from Ascaris suum. Arch Biochem Biophys. 1985 Aug 15; 241(1):67-74.
Score: 0.015
-
Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci. 2005 Aug; 14(8):2115-24.
Score: 0.015
-
Crystallographic studies on Ascaris suum NAD-malic enzyme bound to reduced cofactor and identification of an effector site. J Biol Chem. 2003 Sep 26; 278(39):38051-8.
Score: 0.013
-
Surface-exposed tryptophan residues are essential for O-acetylserine sulfhydrylase structure, function, and stability. J Biol Chem. 2003 Sep 26; 278(39):37511-9.
Score: 0.013
-
Crystal structure of the malic enzyme from Ascaris suum complexed with nicotinamide adenine dinucleotide at 2.3 A resolution. Biochemistry. 2002 Jun 04; 41(22):6928-38.
Score: 0.012
-
Mechanistic deductions from isotope effects in multireactant enzyme mechanisms. Biochemistry. 1981 Mar 31; 20(7):1790-6.
Score: 0.011
-
Kinetic characterization of a T-state of Ascaris suum phosphofructokinase with heterotropic negative cooperativity by ATP eliminated. Arch Biochem Biophys. 1999 May 15; 365(2):335-43.
Score: 0.010
-
Reaction mechanism of fructose-2,6-bisphosphatase. A mutation of nucleophilic catalyst, histidine 256, induces an alteration in the reaction pathway. J Biol Chem. 1999 Jan 22; 274(4):2166-75.
Score: 0.009
-
Crystal structure of the H256A mutant of rat testis fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase. Fructose 6-phosphate in the active site leads to mechanisms for both mutant and wild type bisphosphatase activities. J Biol Chem. 1999 Jan 22; 274(4):2176-84.
Score: 0.009
-
Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol. 1998; 283(1):121-33.
Score: 0.009
-
Chemical mechanism of the fructose-6-phosphate,2-kinase reaction from the pH dependence of kinetic parameters of site-directed mutants of active site basic residues. Biochemistry. 1997 Jul 22; 36(29):8775-84.
Score: 0.008
-
Modification of the ATP inhibitory site of the Ascaris suum phosphofructokinase results in the stabilization of an inactive T state. Biochemistry. 1991 Oct 15; 30(41):9998-10004.
Score: 0.006
-
The kinetic mechanism of human placental aldose reductase and aldehyde reductase II. Arch Biochem Biophys. 1988 Mar; 261(2):264-74.
Score: 0.004