Header Logo

Connection

Paul Cook to Circular Dichroism

This is a "connection" page, showing publications Paul Cook has written about Circular Dichroism.
Connection Strength

0.651
  1. Role of Histidine-152 in cofactor orientation in the PLP-dependent O-acetylserine sulfhydrylase reaction. Arch Biochem Biophys. 2008 Apr 15; 472(2):115-25.
    View in: PubMed
    Score: 0.076
  2. Effect of mutation of lysine-120, located at the entry to the active site of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. Biochim Biophys Acta. 2008 Apr; 1784(4):629-37.
    View in: PubMed
    Score: 0.075
  3. Role of methionine-13 in the catalytic mechanism of 6-phosphogluconate dehydrogenase from sheep liver. Biochemistry. 2005 Feb 22; 44(7):2432-40.
    View in: PubMed
    Score: 0.062
  4. Stabilization and characterization of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. Arch Biochem Biophys. 2004 Jan 15; 421(2):243-54.
    View in: PubMed
    Score: 0.057
  5. Characterization of the S272A,D site-directed mutations of O-acetylserine sulfhydrylase: involvement of the pyridine ring in the alpha,beta-elimination reaction. Biochemistry. 2003 Jan 14; 42(1):106-13.
    View in: PubMed
    Score: 0.053
  6. Substitution of pyridoxal 5'-phosphate in D-serine dehydratase from Escherichia coli by cofactor analogues provides information on cofactor binding and catalysis. J Biol Chem. 1999 Dec 24; 274(52):36935-43.
    View in: PubMed
    Score: 0.043
  7. Cysteine 42 is important for maintaining an integral active site for O-acetylserine sulfhydrylase resulting in the stabilization of the alpha-aminoacrylate intermediate. Biochemistry. 1998 Jul 28; 37(30):10597-604.
    View in: PubMed
    Score: 0.039
  8. Substitution of pyridoxal 5'-phosphate in the O-acetylserine sulfhydrylase from Salmonella typhimurium by cofactor analogs provides a test of the mechanism proposed for formation of the alpha-aminoacrylate intermediate. J Biol Chem. 1996 Oct 18; 271(42):25842-9.
    View in: PubMed
    Score: 0.035
  9. Isotope partitioning with Ascaris suum phosphofructokinase is consistent with an ordered kinetic mechanism. Biochemistry. 1996 Apr 30; 35(17):5451-7.
    View in: PubMed
    Score: 0.033
  10. A pH-dependent allosteric transition in Ascaris suum phosphofructokinase distinct from that observed with fructose 2,6-bisphosphate. Arch Biochem Biophys. 1995 Oct 01; 322(2):410-6.
    View in: PubMed
    Score: 0.032
  11. Identification and spectral characterization of the external aldimine of the O-acetylserine sulfhydrylase reaction. Biochemistry. 1995 Sep 26; 34(38):12152-60.
    View in: PubMed
    Score: 0.032
  12. Product binding to the alpha-carboxyl subsite results in a conformational change at the active site of O-acetylserine sulfhydrylase-A: evidence from fluorescence spectroscopy. Biochemistry. 1994 Feb 22; 33(7):1674-83.
    View in: PubMed
    Score: 0.029
  13. Pre-steady-state kinetics reveal a slow isomerization of the enzyme-NAD complex in the NAD-malic enzyme reaction. Biochemistry. 1993 Mar 02; 32(8):1928-34.
    View in: PubMed
    Score: 0.027
  14. Fructose 2,6-bisphosphate and AMP increase the affinity of the Ascaris suum phosphofructokinase for fructose 6-phosphate in a process separate from the relief of ATP inhibition. J Biol Chem. 1991 May 15; 266(14):8891-6.
    View in: PubMed
    Score: 0.024
  15. Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J Biol Chem. 2004 Sep 24; 279(39):40737-47.
    View in: PubMed
    Score: 0.015
  16. Surface-exposed tryptophan residues are essential for O-acetylserine sulfhydrylase structure, function, and stability. J Biol Chem. 2003 Sep 26; 278(39):37511-9.
    View in: PubMed
    Score: 0.014
  17. Effector-induced conformational transitions in Ascaris suum phosphofructokinase. A fluorescence and circular dichroism study. J Biol Chem. 1991 May 15; 266(14):8884-90.
    View in: PubMed
    Score: 0.006
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.