Header Logo

Connection

Resham Bhattacharya to Cell Line, Tumor

This is a "connection" page, showing publications Resham Bhattacharya has written about Cell Line, Tumor.
Connection Strength

1.377
  1. KRCC1: A potential therapeutic target in ovarian cancer. FASEB J. 2020 02; 34(2):2287-2300.
    View in: PubMed
    Score: 0.128
  2. Inhibition of BMI1, a Therapeutic Approach in Endometrial Cancer. Mol Cancer Ther. 2018 10; 17(10):2136-2143.
    View in: PubMed
    Score: 0.116
  3. Evaluating the Mechanism and Therapeutic Potential of PTC-028, a Novel Inhibitor of BMI-1 Function in Ovarian Cancer. Mol Cancer Ther. 2018 01; 17(1):39-49.
    View in: PubMed
    Score: 0.111
  4. BMI1, a new target of CK2a. Mol Cancer. 2017 03 07; 16(1):56.
    View in: PubMed
    Score: 0.106
  5. MDR1 mediated chemoresistance: BMI1 and TIP60 in action. Biochim Biophys Acta. 2016 08; 1859(8):983-93.
    View in: PubMed
    Score: 0.101
  6. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016; 12(4):659-70.
    View in: PubMed
    Score: 0.098
  7. MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res. 2009 Dec 01; 69(23):9090-5.
    View in: PubMed
    Score: 0.064
  8. Role of hedgehog signaling in ovarian cancer. Clin Cancer Res. 2008 Dec 01; 14(23):7659-66.
    View in: PubMed
    Score: 0.060
  9. Deciphering a GPCR-lncrna-miRNA nexus: Identification of an aberrant therapeutic target in ovarian cancer. Cancer Lett. 2024 Jun 01; 591:216891.
    View in: PubMed
    Score: 0.043
  10. MicroRNA-195 controls MICU1 expression and tumor growth in ovarian cancer. EMBO Rep. 2020 10 05; 21(10):e48483.
    View in: PubMed
    Score: 0.034
  11. Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. Sci Adv. 2020 07; 6(30):eaba5379.
    View in: PubMed
    Score: 0.033
  12. Ubiquitin-binding associated protein 2 regulates KRAS activation and macropinocytosis in pancreatic cancer. FASEB J. 2020 09; 34(9):12024-12039.
    View in: PubMed
    Score: 0.033
  13. Targeting Pancreatic Cancer Cells and Stellate Cells Using Designer Nanotherapeutics in vitro. Int J Nanomedicine. 2020; 15:991-1003.
    View in: PubMed
    Score: 0.032
  14. Multifunctional APJ Pathway Promotes Ovarian Cancer Progression and Metastasis. Mol Cancer Res. 2019 06; 17(6):1378-1390.
    View in: PubMed
    Score: 0.030
  15. Cystathionine ß-synthase regulates mitochondrial morphogenesis in ovarian cancer. FASEB J. 2018 08; 32(8):4145-4157.
    View in: PubMed
    Score: 0.028
  16. MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat Commun. 2017 05 22; 8:14634.
    View in: PubMed
    Score: 0.027
  17. Gold Nanoparticle Reprograms Pancreatic Tumor Microenvironment and Inhibits Tumor Growth. ACS Nano. 2016 12 27; 10(12):10636-10651.
    View in: PubMed
    Score: 0.026
  18. Role of cystathionine beta synthase in lipid metabolism in ovarian cancer. Oncotarget. 2015 Nov 10; 6(35):37367-84.
    View in: PubMed
    Score: 0.024
  19. Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget. 2014 Aug 15; 5(15):6453-65.
    View in: PubMed
    Score: 0.022
  20. Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One. 2013; 8(11):e79167.
    View in: PubMed
    Score: 0.021
  21. Probing novel roles of the mitochondrial uniporter in ovarian cancer cells using nanoparticles. J Biol Chem. 2013 Jun 14; 288(24):17610-8.
    View in: PubMed
    Score: 0.020
  22. Inhibiting the growth of pancreatic adenocarcinoma in vitro and in vivo through targeted treatment with designer gold nanotherapeutics. PLoS One. 2013; 8(3):e57522.
    View in: PubMed
    Score: 0.020
  23. Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int J Cancer. 2013 Mar 01; 132(5):1201-12.
    View in: PubMed
    Score: 0.019
  24. Identifying new therapeutic targets via modulation of protein corona formation by engineered nanoparticles. PLoS One. 2012; 7(3):e33650.
    View in: PubMed
    Score: 0.019
  25. Switching the targeting pathways of a therapeutic antibody by nanodesign. Angew Chem Int Ed Engl. 2012 Feb 13; 51(7):1563-7.
    View in: PubMed
    Score: 0.018
  26. Efficient delivery of gold nanoparticles by dual receptor targeting. Adv Mater. 2011 Nov 16; 23(43):5034-8.
    View in: PubMed
    Score: 0.018
  27. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One. 2011; 6(9):e24374.
    View in: PubMed
    Score: 0.018
  28. A simple synthesis of a targeted drug delivery system with enhanced cytotoxicity. Chem Commun (Camb). 2011 Aug 14; 47(30):8530-2.
    View in: PubMed
    Score: 0.018
  29. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS One. 2011; 6(6):e20347.
    View in: PubMed
    Score: 0.018
  30. Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proc Natl Acad Sci U S A. 2010 Aug 17; 107(33):14541-6.
    View in: PubMed
    Score: 0.017
  31. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010 Jul 14; 10(7):2543-8.
    View in: PubMed
    Score: 0.017
  32. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008 Mar 15; 68(6):1970-8.
    View in: PubMed
    Score: 0.014
  33. Antiangiogenic properties of gold nanoparticles. Clin Cancer Res. 2005 May 01; 11(9):3530-4.
    View in: PubMed
    Score: 0.012
  34. Protein kinase C zeta transactivates hypoxia-inducible factor alpha by promoting its association with p300 in renal cancer. Cancer Res. 2004 Jan 15; 64(2):456-62.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.