Header Logo

Connection

Rong Gan to Middle Aged

This is a "connection" page, showing publications Rong Gan has written about Middle Aged.
Connection Strength

0.785
  1. 3D Finite Element Modeling of Blast Wave Transmission from the External Ear to Cochlea. Ann Biomed Eng. 2021 Feb; 49(2):757-768.
    View in: PubMed
    Score: 0.079
  2. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Hear Res. 2019 07; 378:43-52.
    View in: PubMed
    Score: 0.070
  3. Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid. J Assoc Res Otolaryngol. 2014 Dec; 15(6):867-81.
    View in: PubMed
    Score: 0.052
  4. Dynamic properties of human stapedial annular ligament measured with frequency-temperature superposition. J Biomech Eng. 2014 Aug; 136(8).
    View in: PubMed
    Score: 0.052
  5. Finite element modeling of energy absorbance in normal and disordered human ears. Hear Res. 2013 Jul; 301:146-55.
    View in: PubMed
    Score: 0.046
  6. Dynamic properties of human tympanic membrane based on frequency-temperature superposition. Ann Biomed Eng. 2013 Jan; 41(1):205-14.
    View in: PubMed
    Score: 0.045
  7. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint. Biomech Model Mechanobiol. 2011 Oct; 10(5):713-26.
    View in: PubMed
    Score: 0.043
  8. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng. 2011 Oct; 58(10):3024-7.
    View in: PubMed
    Score: 0.042
  9. Mechanical properties of stapedial annular ligament. Med Eng Phys. 2011 Apr; 33(3):330-9.
    View in: PubMed
    Score: 0.040
  10. Mechanical properties of stapedial tendon in human middle ear. J Biomech Eng. 2007 Dec; 129(6):913-18.
    View in: PubMed
    Score: 0.033
  11. Multifield coupled finite element analysis for sound transmission in otitis media with effusion. J Acoust Soc Am. 2007 Dec; 122(6):3527-38.
    View in: PubMed
    Score: 0.033
  12. Combined effect of fluid and pressure on middle ear function. Hear Res. 2008 Feb; 236(1-2):22-32.
    View in: PubMed
    Score: 0.033
  13. Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis. Biomech Model Mechanobiol. 2008 Oct; 7(5):387-94.
    View in: PubMed
    Score: 0.032
  14. Experimental measurement and modeling analysis on mechanical properties of tensor tympani tendon. Med Eng Phys. 2008 Apr; 30(3):358-66.
    View in: PubMed
    Score: 0.031
  15. Tympanometry and laser Doppler interferometry measurements on otitis media with effusion model in human temporal bones. Otol Neurotol. 2007 Jun; 28(4):551-8.
    View in: PubMed
    Score: 0.031
  16. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling. Hear Res. 2007 Aug; 230(1-2):24-33.
    View in: PubMed
    Score: 0.031
  17. Human middle ear transfer function measured by double laser interferometry system. Otol Neurotol. 2004 Jul; 25(4):423-35.
    View in: PubMed
    Score: 0.026
  18. An advanced computer-aided geometric modeling and fabrication method for human middle ear. Med Eng Phys. 2002 Nov; 24(9):595-606.
    View in: PubMed
    Score: 0.023
  19. Mass loading on the ossicles and middle ear function. Ann Otol Rhinol Laryngol. 2001 May; 110(5 Pt 1):478-85.
    View in: PubMed
    Score: 0.021
  20. Mapping the Young's modulus distribution of the human tympanic membrane by microindentation. Hear Res. 2019 07; 378:75-91.
    View in: PubMed
    Score: 0.018
  21. Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol. 2002 Oct; 1(2):109-22.
    View in: PubMed
    Score: 0.006
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.