Ann West to Mutagenesis, Site-Directed
This is a "connection" page, showing publications Ann West has written about Mutagenesis, Site-Directed.
Connection Strength
0.466
-
Probing the chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae using site-directed mutagenesis. Arch Biochem Biophys. 2015 Oct 15; 584:98-106.
Score: 0.124
-
Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2012 Jan 31; 51(4):857-66.
Score: 0.097
-
Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry. 2005 Jan 11; 44(1):377-86.
Score: 0.060
-
Ssk1p response regulator binding surface on histidine-containing phosphotransfer protein Ypd1p. Eukaryot Cell. 2003 Feb; 2(1):27-33.
Score: 0.052
-
Functional roles of conserved amino acid residues surrounding the phosphorylatable histidine of the yeast phosphorelay protein YPD1. Mol Microbiol. 2000 Jul; 37(1):136-44.
Score: 0.043
-
Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae. Arch Biochem Biophys. 2012 Jun 01; 522(1):57-61.
Score: 0.025
-
The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH. Arch Biochem Biophys. 2011 Sep 15; 513(2):71-80.
Score: 0.023
-
Glutamates 78 and 122 in the active site of saccharopine dehydrogenase contribute to reactant binding and modulate the basicity of the acid-base catalysts. J Biol Chem. 2010 Jul 02; 285(27):20756-68.
Score: 0.021
-
Site-directed mutagenesis as a probe of the acid-base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry. 2009 Aug 04; 48(30):7305-12.
Score: 0.020